A regular expression (or RE) specifies a set of strings that matches
it; the functions in this module let you check if a particular string
matches a given regular expression (or if a given regular expression
matches a particular string, which comes down to the same thing).
Regular expressions can be concatenated to form new regular
expressions; if A and B are both regular expressions,
then AB is also a regular expression. If a string p
matches A and another string q matches B, the string pq
will match AB if A and B do no specify boundary
conditions that are no longer satisfied by pq. Thus, complex
expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory
and implementation of regular expressions, consult the Friedl book
referenced below, or almost any textbook about compiler construction.
A brief explanation of the format of regular expressions follows. For
further information and a gentler presentation, consult the Regular
Expression HOWTO, accessible from http://www.python.org/doc/howto/.
Regular expressions can contain both special and ordinary characters.
Most ordinary characters, like "A", "a", or
"0", are the simplest regular expressions; they simply match
themselves. You can concatenate ordinary characters, so last
matches the string 'last'. (In the rest of this section, we'll
write RE's in this special style, usually without quotes, and
strings to be matched 'in single quotes'.)
Some characters, like "|" or "(", are special.
Special characters either stand for classes of ordinary characters, or
affect how the regular expressions around them are interpreted.
The special characters are:
"."
(Dot.) In the default mode, this matches any
character except a newline. If the DOTALL flag has been
specified, this matches any character including a newline.
"^"
(Caret.) Matches the start of the string, and in
MULTILINE mode also matches immediately after each newline.
"$"
Matches the end of the string or just before the
newline at the end of the string, and in MULTILINE mode
also matches before a newline. foo matches both 'foo' and
'foobar', while the regular expression foo$ matches only
'foo'. More interestingly, searching for foo$ in
'foo1\nfoo2\n' matches 'foo2' normally,
but 'foo1' in MULTILINE mode.
"*"
Causes the resulting RE to
match 0 or more repetitions of the preceding RE, as many repetitions
as are possible. ab* will
match 'a', 'ab', or 'a' followed by any number of 'b's.
"+"
Causes the
resulting RE to match 1 or more repetitions of the preceding RE.
ab+ will match 'a' followed by any non-zero number of 'b's; it
will not match just 'a'.
"?"
Causes the resulting RE to
match 0 or 1 repetitions of the preceding RE. ab? will
match either 'a' or 'ab'.
*?, +?, ??
The "*",
"+", and "?" qualifiers are all greedy; they
match as much text as possible. Sometimes this behaviour isn't
desired; if the RE <.*> is matched against
'<H1>title</H1>', it will match the entire string, and not just
'<H1>'. Adding "?" after the qualifier makes it
perform the match in non-greedy or minimal fashion; as
few characters as possible will be matched. Using .*?
in the previous expression will match only '<H1>'.
{m}
Specifies that exactly m copies of the previous RE should be
matched; fewer matches cause the entire RE not to match. For example,
a{6} will match exactly six "a" characters, but
not five.
{m,n}
Causes the resulting RE to match from
m to n repetitions of the preceding RE, attempting to
match as many repetitions as possible. For example, a{3,5}
will match from 3 to 5 "a" characters. Omitting n
specifies an infinite upper bound; you can't omit m. As an
example, a{4,}b will match aaaab, a thousand
"a" characters followed by a b, but not aaab.
The comma may not be omitted or the modifier would be confused with
the previously described form.
{m,n}?
Causes the resulting RE to
match from m to n repetitions of the preceding RE,
attempting to match as few repetitions as possible. This is
the non-greedy version of the previous qualifier. For example, on the
6-character string 'aaaaaa', a{3,5} will match 5
"a" characters, while a{3,5}? will only match 3
characters.
"\"
Either escapes special characters (permitting
you to match characters like "*", "?", and so
forth), or signals a special sequence; special sequences are discussed
below.
If you're not using a raw string to
express the pattern, remember that Python also uses the
backslash as an escape sequence in string literals; if the escape
sequence isn't recognized by Python's parser, the backslash and
subsequent character are included in the resulting string. However,
if Python would recognize the resulting sequence, the backslash should
be repeated twice. This is complicated and hard to understand, so
it's highly recommended that you use raw strings for all but the
simplest expressions.
[]
Used to indicate a set of characters. Characters can
be listed individually, or a range of characters can be indicated by
giving two characters and separating them by a "-". Special
characters are not active inside sets. For example, [akm$]
will match any of the characters "a", "k",
"m", or "$"; [a-z]
will match any lowercase letter, and [a-zA-Z0-9] matches any
letter or digit. Character classes such as \w or \S
(defined below) are also acceptable inside a range. If you want to
include a "]" or a "-" inside a set, precede it with a
backslash, or place it as the first character. The
pattern []] will match ']', for example.
You can match the characters not within a range by complementing
the set. This is indicated by including a "^" as the first
character of the set; "^" elsewhere will simply match the
"^" character. For example, [^5] will match
any character except "5".
"|"
A|B, where A and B can be arbitrary REs,
creates a regular expression that will match either A or B. An
arbitrary number of REs can be separated by the "|" in this
way. This can be used inside groups (see below) as well. REs
separated by "|" are tried from left to right, and the first
one that allows the complete pattern to match is considered the
accepted branch. This means that if A matches, B will
never be tested, even if it would produce a longer overall match. In
other words, the "|" operator is never greedy. To match a
literal "|", use \|, or enclose it inside a
character class, as in [|].
(...)
Matches whatever regular expression is inside the
parentheses, and indicates the start and end of a group; the contents
of a group can be retrieved after a match has been performed, and can
be matched later in the string with the \number special
sequence, described below. To match the literals "(" or
")", use \( or \), or enclose them
inside a character class: [(] [)].
(?...)
This is an extension notation (a "?"
following a "(" is not meaningful otherwise). The first
character after the "?"
determines what the meaning and further syntax of the construct is.
Extensions usually do not create a new group;
(?P<name>...) is the only exception to this rule.
Following are the currently supported extensions.
(?iLmsux)
(One or more letters from the set "i",
"L", "m", "s", "u",
"x".) The group matches the empty string; the letters set
the corresponding flags (re.I, re.L,
re.M, re.S, re.U, re.X)
for the entire regular expression. This is useful if you wish to
include the flags as part of the regular expression, instead of
passing a flag argument to the compile() function.
Note that the (?x) flag changes how the expression is parsed.
It should be used first in the expression string, or after one or more
whitespace characters. If there are non-whitespace characters before
the flag, the results are undefined.
(?:...)
A non-grouping version of regular parentheses.
Matches whatever regular expression is inside the parentheses, but the
substring matched by the
group cannot be retrieved after performing a match or
referenced later in the pattern.
(?P<name>...)
Similar to regular parentheses, but
the substring matched by the group is accessible via the symbolic group
name name. Group names must be valid Python identifiers, and
each group name must be defined only once within a regular expression. A
symbolic group is also a numbered group, just as if the group were not
named. So the group named 'id' in the example above can also be
referenced as the numbered group 1.
For example, if the pattern is
(?P<id>[a-zA-Z_]\w*), the group can be referenced by its
name in arguments to methods of match objects, such as
m.group('id') or m.end('id'), and also by name in
pattern text (for example, (?P=id)) and replacement text
(such as \g<id>).
(?P=name)
Matches whatever text was matched by the
earlier group named name.
(?#...)
A comment; the contents of the parentheses are
simply ignored.
(?=...)
Matches if ... matches next, but doesn't
consume any of the string. This is called a lookahead assertion. For
example, Isaac (?=Asimov) will match 'Isaac ' only if it's
followed by 'Asimov'.
(?!...)
Matches if ... doesn't match next. This
is a negative lookahead assertion. For example,
Isaac (?!Asimov) will match 'Isaac ' only if it's not
followed by 'Asimov'.
(?<=...)
Matches if the current position in the string
is preceded by a match for ... that ends at the current
position. This is called a positive lookbehind assertion.
(?<=abc)def will match "abcdef", since the lookbehind
will back up 3 characters and check if the contained pattern matches.
The contained pattern must only match strings of some fixed length,
meaning that abc or a|b are allowed, but a*
isn't.
(?<!...)
Matches if the current position in the string
is not preceded by a match for .... This
is called a negative lookbehind assertion. Similar to positive lookbehind
assertions, the contained pattern must only match strings of some
fixed length.
The special sequences consist of "\" and a character from the
list below. If the ordinary character is not on the list, then the
resulting RE will match the second character. For example,
\$ matches the character "$".
\number
Matches the contents of the group of the
same number. Groups are numbered starting from 1. For example,
(.+) \1 matches 'the the' or '55 55', but not
'the end' (note
the space after the group). This special sequence can only be used to
match one of the first 99 groups. If the first digit of number
is 0, or number is 3 octal digits long, it will not be interpreted
as a group match, but as the character with octal value number.
(There is a group 0, which is the entire matched pattern, but it can't
be referenced with \0; instead, use \g<0>.)
Inside the "[" and "]" of a character class, all numeric
escapes are treated as characters.
\A
Matches only at the start of the string.
\b
Matches the empty string, but only at the
beginning or end of a word. A word is defined as a sequence of
alphanumeric characters, so the end of a word is indicated by
whitespace or a non-alphanumeric character. Inside a character range,
\b represents the backspace character, for compatibility with
Python's string literals.
\B
Matches the empty string, but only when it is
not at the beginning or end of a word.
\d
Matches any decimal digit; this is
equivalent to the set [0-9].
\D
Matches any non-digit character; this is
equivalent to the set [^0-9].
\s
Matches any whitespace character; this is
equivalent to the set [ \t\n\r\f\v].
\S
Matches any non-whitespace character; this is
equivalent to the set [^ \t\n\r\f\v].
\w
When the LOCALE and UNICODE
flags are not specified,
matches any alphanumeric character; this is equivalent to the set
[a-zA-Z0-9_]. With LOCALE, it will match the set
[0-9_] plus whatever characters are defined as letters for
the current locale. If UNICODE is set, this will match the
characters [0-9_] plus whatever is classified as alphanumeric
in the Unicode character properties database.
\W
When the LOCALE and UNICODE
flags are not specified, matches any non-alphanumeric character; this
is equivalent to the set [^a-zA-Z0-9_]. With
LOCALE, it will match any character not in the set
[0-9_], and not defined as a letter for the current locale.
If UNICODE is set, this will match anything other than
[0-9_] and characters marked at alphanumeric in the Unicode
character properties database.