|
4.3 struct -- Interpret strings as packed binary data
This module performs conversions between Python values and C structs represented as Python strings. It uses format strings (explained below) as compact descriptions of the lay-out of the C structs and the intended conversion to/from Python values. This can be used in handling binary data stored in files or from network connections, among other sources. The module defines the following exception and functions:
Format characters have the following meaning; the conversion between C and Python values should be obvious given their types:
Notes:
A format character may be preceded by an integral repeat count. For
example, the format string Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.
For the "s" format character, the count is interpreted as the
size of the string, not a repeat count like for the other format
characters; for example, The "p" format character encodes a "Pascal string", meaning a short variable-length string stored in a fixed number of bytes. The count is the total number of bytes stored. The first byte stored is the length of the string, or 255, whichever is smaller. The bytes of the string follow. If the string passed in to pack() is too long (longer than the count minus 1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1, it is padded with null bytes so that exactly count bytes in all are used. Note that for unpack(), the "p" format character consumes count bytes, but that the string returned can never contain more than 255 characters. For the "I", "L", "q" and "Q" format characters, the return value is a Python long integer.
For the "P" format character, the return value is a Python
integer or long integer, depending on the size needed to hold a
pointer when it has been cast to an integer type. A NULL pointer will
always be returned as the Python integer By default, C numbers are represented in the machine's native format and byte order, and properly aligned by skipping pad bytes if necessary (according to the rules used by the C compiler). Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the packed data, according to the following table:
If the first character is not one of these, "@" is assumed. Native byte order is big-endian or little-endian, depending on the host system. For example, Motorola and Sun processors are big-endian; Intel and DEC processors are little-endian. Native size and alignment are determined using the C compiler's sizeof expression. This is always combined with native byte order. Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes); short is 2 bytes; int and long are 4 bytes; long long (__int64 on Windows) is 8 bytes; float and double are 32-bit and 64-bit IEEE floating point numbers, respectively. Note the difference between "@" and "=": both use native byte order, but the size and alignment of the latter is standardized. The form "!" is available for those poor souls who claim they can't remember whether network byte order is big-endian or little-endian. There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of "<" or ">". The "P" format character is only available for the native byte ordering (selected as the default or with the "@" byte order character). The byte order character "=" chooses to use little- or big-endian ordering based on the host system. The struct module does not interpret this as native ordering, so the "P" format is not available. Examples (all using native byte order, size and alignment, on a big-endian machine):
Hint: to align the end of a structure to the alignment requirement of
a particular type, end the format with the code for that type with a
repeat count of zero. For example, the format
See Also:
|