Exceptions can be class objects or string objects. Though most
exceptions have been string objects in past versions of Python, in
Python 1.5 and newer versions, all standard exceptions have been
converted to class objects, and users are encouraged to do the same.
The exceptions are defined in the module exceptions. This
module never needs to be imported explicitly: the exceptions are
provided in the built-in namespace as well as the exceptions
module.
Two distinct string objects with the same value are considered different
exceptions. This is done to force programmers to use exception names
rather than their string value when specifying exception handlers.
The string value of all built-in exceptions is their name, but this is
not a requirement for user-defined exceptions or exceptions defined by
library modules.
For class exceptions, in a trystatement with
an exceptclause that mentions a particular
class, that clause also handles any exception classes derived from
that class (but not exception classes from which it is
derived). Two exception classes that are not related via subclassing
are never equivalent, even if they have the same name.
The built-in exceptions listed below can be generated by the
interpreter or built-in functions. Except where mentioned, they have
an ``associated value'' indicating the detailed cause of the error.
This may be a string or a tuple containing several items of
information (e.g., an error code and a string explaining the code).
The associated value is the second argument to the
raisestatement. For string exceptions, the
associated value itself will be stored in the variable named as the
second argument of the except clause (if any). For class
exceptions, that variable receives the exception instance. If the
exception class is derived from the standard root class
Exception, the associated value is present as the
exception instance's args attribute, and possibly on other
attributes as well.
User code can raise built-in exceptions. This can be used to test an
exception handler or to report an error condition ``just like'' the
situation in which the interpreter raises the same exception; but
beware that there is nothing to prevent user code from raising an
inappropriate error.
The built-in exception classes can be sub-classed to define new
exceptions; programmers are encouraged to at least derive new
exceptions from the Exception base class. More
information on defining exceptions is available in the
Python Tutorial under the heading
``User-defined Exceptions.''
The following exceptions are only used as base classes for other
exceptions.
The root class for exceptions. All built-in exceptions are derived
from this class. All user-defined exceptions should also be derived
from this class, but this is not (yet) enforced. The str()
function, when applied to an instance of this class (or most derived
classes) returns the string value of the argument or arguments, or an
empty string if no arguments were given to the constructor. When used
as a sequence, this accesses the arguments given to the constructor
(handy for backward compatibility with old code). The arguments are
also available on the instance's args attribute, as a tuple.
The base class for the exceptions that are raised when a key or
index used on a mapping or sequence is invalid: IndexError,
KeyError. This can be raised directly by
sys.setdefaultencoding().
The base class for exceptions that
can occur outside the Python system: IOError,
OSError. When exceptions of this type are created with a
2-tuple, the first item is available on the instance's errno
attribute (it is assumed to be an error number), and the second item
is available on the strerror attribute (it is usually the
associated error message). The tuple itself is also available on the
args attribute.
New in version 1.5.2.
When an EnvironmentError exception is instantiated with a
3-tuple, the first two items are available as above, while the third
item is available on the filename attribute. However, for
backwards compatibility, the args attribute contains only a
2-tuple of the first two constructor arguments.
The filename attribute is None when this exception is
created with other than 3 arguments. The errno and
strerror attributes are also None when the instance was
created with other than 2 or 3 arguments. In this last case,
args contains the verbatim constructor arguments as a tuple.
The following exceptions are the exceptions that are actually raised.
Raised when an attribute reference or assignment fails. (When an
object does not support attribute references or attribute assignments
at all, TypeError is raised.)
Raised when one of the built-in functions (input() or
raw_input()) hits an end-of-file condition (EOF) without
reading any data.
(N.B.: the read() and readline() methods of file
objects return an empty string when they hit EOF.)
Raised when a floating point operation fails. This exception is
always defined, but can only be raised when Python is configured
with the --with-fpectl option, or the
WANT_SIGFPE_HANDLER symbol is defined in the
pyconfig.h file.
Raised when an I/O operation (such as a print statement,
the built-in open() function or a method of a file
object) fails for an I/O-related reason, e.g., ``file not found'' or
``disk full''.
This class is derived from EnvironmentError. See the
discussion above for more information on exception instance
attributes.
Raised when a sequence subscript is out of range. (Slice indices are
silently truncated to fall in the allowed range; if an index is not a
plain integer, TypeError is raised.)
Raised when the user hits the interrupt key (normally
Control-C or Delete). During execution, a check for
interrupts is made regularly.
Interrupts typed when a built-in function input() or
raw_input()) is waiting for input also raise this
exception.
Raised when an operation runs out of memory but the situation may
still be rescued (by deleting some objects). The associated value is
a string indicating what kind of (internal) operation ran out of memory.
Note that because of the underlying memory management architecture
(C's malloc() function), the interpreter may not
always be able to completely recover from this situation; it
nevertheless raises an exception so that a stack traceback can be
printed, in case a run-away program was the cause.
This exception is derived from RuntimeError. In user
defined base classes, abstract methods should raise this exception
when they require derived classes to override the method.
New in version 1.5.2.
This class is derived from EnvironmentError and is used
primarily as the os module's os.error exception.
See EnvironmentError above for a description of the
possible associated values.
New in version 1.5.2.
Raised when the result of an arithmetic operation is too large to be
represented. This cannot occur for long integers (which would rather
raise MemoryError than give up). Because of the lack of
standardization of floating point exception handling in C, most
floating point operations also aren't checked. For plain integers,
all operations that can overflow are checked except left shift, where
typical applications prefer to drop bits than raise an exception.
This exception is raised when a weak reference proxy, created by the
weakref.proxy() function, is used to access
an attribute of the referent after it has been garbage collected.
For more information on weak references, see the weakref
module.
New in version 2.2:
Previously known as the
weakref.ReferenceError
exception.
Raised when an error is detected that doesn't fall in any of the
other categories. The associated value is a string indicating what
precisely went wrong. (This exception is mostly a relic from a
previous version of the interpreter; it is not used very much any
more.)
Raised by an iterator's next() method to signal that there
are no further values.
This is derived from Exception rather than
StandardError, since this is not considered an error in
its normal application.
New in version 2.2.
Raised when the parser encounters a syntax error. This may occur in
an import statement, in an exec statement, in a call
to the built-in function eval() or input(), or
when reading the initial script or standard input (also
interactively).
Instances of this class have atttributes filename,
lineno, offset and text for easier access
to the details. str() of the exception instance returns
only the message.
Raised when the interpreter finds an internal error, but the
situation does not look so serious to cause it to abandon all hope.
The associated value is a string indicating what went wrong (in
low-level terms).
You should report this to the author or maintainer of your Python
interpreter. Be sure to report the version of the Python
interpreter (sys.version; it is also printed at the start of an
interactive Python session), the exact error message (the exception's
associated value) and if possible the source of the program that
triggered the error.
This exception is raised by the sys.exit() function. When it
is not handled, the Python interpreter exits; no stack traceback is
printed. If the associated value is a plain integer, it specifies the
system exit status (passed to C's exit() function); if it is
None, the exit status is zero; if it has another type (such as
a string), the object's value is printed and the exit status is one.
Instances have an attribute code which is set to the
proposed exit status or error message (defaulting to None).
Also, this exception derives directly from Exception and
not StandardError, since it is not technically an error.
A call to sys.exit() is translated into an exception so that
clean-up handlers (finally clauses of try statements)
can be executed, and so that a debugger can execute a script without
running the risk of losing control. The os._exit() function
can be used if it is absolutely positively necessary to exit
immediately (for example, in the child process after a call to
fork()).
Raised when a built-in operation or function is applied to an object
of inappropriate type. The associated value is a string giving
details about the type mismatch.
Raised when a reference is made to a local variable in a function or
method, but no value has been bound to that variable. This is a
subclass of NameError.
New in version 2.0.
Raised when a built-in operation or function receives an argument
that has the right type but an inappropriate value, and the
situation is not described by a more precise exception such as
IndexError.
Raised when a Windows-specific error occurs or when the error number
does not correspond to an errno value. The
errno and strerror values are created from the
return values of the GetLastError() and
FormatMessage() functions from the Windows Platform API.
This is a subclass of OSError.
New in version 2.0.
Raised when the second argument of a division or modulo operation is
zero. The associated value is a string indicating the type of the
operands and the operation.
The following exceptions are used as warning categories; see the
warnings module for more information.