|
Go to the first, previous, next, last section, table of contents.
Splitting fields
This operation may be somewhat unusual and for specific interest.
(Galois Group for example.) Procedurally, however, it is easy to
obtain the splitting field of a polynomial by repeated application
of algebraic factorization described in the previous section.
The function is [103] sp(x^5-2); [[x+(-#1),2*x+(#0^3*#1^3+#0^4*#1^2+2*#1+2*#0),2*x+(-#0^4*#1^2),2*x +(-#0^3*#1^3),x+(-#0)],[[(#1),t#1^4+t#0*t#1^3+t#0^2*t#1^2+t#0^3*t#1+t#0^4], [(#0),t#0^5-2]]]
Function The first element of the result, a list of linear factors, contains all irreducible factors of the input polynomial over the field obtained by adjoining all root's in the second element of the result. Because such field is the splitting field of the input polynomial, factors in the result are all linear as the consequence.
Similarly to function Go to the first, previous, next, last section, table of contents. |